ROI-Based On-Board Compression for Hyperspectral Remote Sensing Images on GPU
نویسندگان
چکیده
In recent years, hyperspectral sensors for Earth remote sensing have become very popular. Such systems are able to provide the user with images having both spectral and spatial information. The current hyperspectral spaceborne sensors are able to capture large areas with increased spatial and spectral resolution. For this reason, the volume of acquired data needs to be reduced on board in order to avoid a low orbital duty cycle due to limited storage space. Recently, literature has focused the attention on efficient ways for on-board data compression. This topic is a challenging task due to the difficult environment (outer space) and due to the limited time, power and computing resources. Often, the hardware properties of Graphic Processing Units (GPU) have been adopted to reduce the processing time using parallel computing. The current work proposes a framework for on-board operation on a GPU, using NVIDIA's CUDA (Compute Unified Device Architecture) architecture. The algorithm aims at performing on-board compression using the target's related strategy. In detail, the main operations are: the automatic recognition of land cover types or detection of events in near real time in regions of interest (this is a user related choice) with an unsupervised classifier; the compression of specific regions with space-variant different bit rates including Principal Component Analysis (PCA), wavelet and arithmetic coding; and data volume management to the Ground Station. Experiments are provided using a real dataset taken from an AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) airborne sensor in a harbor area.
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملUse of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing
Hyperspectral imaging is a growing area in remote sensing in which an imaging spectrometer collects hundreds of images (at different wavelength channels) for the same area on the surface of the Earth. Hyperspectral images are extremely high-dimensional, and require advanced on-board processing algorithms able to satisfy near real-time constraints in applications such as wildland fire monitoring...
متن کاملFPGA Implementation of JPEG and JPEG2000-Based Dynamic Partial Reconfiguration on SOC for Remote Sensing Satellite On-Board Processing
This paper presents the design procedure and implementation results of a proposed hardware which performs different satellite Image compressions using FPGA Xilinx board. First, the method is described and then VHDL code is written and synthesized by ISE software of Xilinx Company. The results show that it is easy and useful to design, develop and implement the hardware image compressor using ne...
متن کاملOptimization of a Hyperspectral Image Processing Chain Using Heterogeneous and GPU-Based Parallel Computing Architectures
Hyperspectral imaging is a new technique in remote sensing that generates hundreds of images, at different wavelength channels, for the same area on the surface of the Earth. In recent years, several efforts have been directed towards the incorporation of high-performance computing systems and architectures into remote sensing missions. With the aim of providing an overview of current and new t...
متن کاملPerformance Evaluation of Distributed Source Coding for Lossless Compression of Hyperspectral Images
This paper deals with the application of distributed source coding (DSC) theory to remote sensing image compression. Although DSC exhibits a significant potential in many application fields, up to now the results obtained on real signals fall short of the theoretical bounds, and often impose additional system-level constraints. The objective of this paper is to assess the potential of DSC for o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017